Additive triples in groups of odd prime order

Sophie Huczynska Jonathan Jedwab Laura Johnson

7 May 2024

Abstract

Let p be an odd prime. For nontrivial proper subsets A, B of \mathbb{Z}_{p} of cardinality s, t, respectively, we count the number $r(A, B, B)$ of additive triples, namely elements of the form $(a, b, a+b)$ in $A \times B \times B$. For given s, t, what is the spectrum of possible values for $r(A, B, B)$? In the special case $A=B$, the additive triple is called a Schur triple. Various authors have given bounds on the number $r(A, A, A)$ of Schur triples, and shown that the lower and upper bound can each be attained by a set A that is an interval of s consecutive elements of \mathbb{Z}_{p}. However, there are values of p, s for which not every value between the lower and upper bounds is attainable. We consider here the general case where A, B can be distinct. We use Pollard's generalization of the Cauchy-Davenport Theorem to derive bounds on the number $r(A, B, B)$ of additive triples. In contrast to the case $A=B$, we show that every value of $r(A, B, B)$ from the lower bound to the upper bound is attainable: each such value can be attained when B is an interval of t consecutive elements of \mathbb{Z}_{p}.

1 Introduction

Let G be an additive group. A Schur triple in a subset A of G is a triple of the form $(a, b, a+b) \in$ A^{3}; Schur triples were originally considered only in the case $G=\mathbb{Z}$ [13]. Let $r(A)$ be the number of Schur triples in A. Several authors have studied the behaviour of $r(A)$ as A ranges over some or all subsets of a group G, and the nature of the subsets A attaining a particular value of $r(A)$.

A sum-free set A is one for which $r(A)=0$, and has received much attention. The CameronErdős Conjecture [2] concerns the number of sum-free sets in $\{1,2, \ldots, n\} \subset \mathbb{Z}$; this was resolved independently by Green [7] and Sapozhenko [14]. Lev and Schoen [10] studied the number of sum-free sets when G is a group of prime order. Erdős [6] asked what is the largest size of a sum-free set in an abelian group; this question was considered by Green and Ruzsa [8].

A popular problem is to determine the minimum and maximum value of $r(A)$ over all subsets A of fixed cardinality in a specified group G. The case $G=\mathbb{Z}_{p}$ for a prime p is of particular interest, in part because of its relation to sumset results such as the Cauchy-Davenport Theorem $[3,5]$. We use the set notation $a+B:=\{a+b: b \in B\}$ and $A+B:=\{a+B: a \in A\}$.

Theorem 1.1 (Cauchy-Davenport Theorem $[3,5])$. Let p be prime and let A, B be non-empty subsets of \mathbb{Z}_{p}. Then $|A+B| \geq \min (p,|A|+|B|-1)$.

[^0]The special case $A=B$ of Theorem 1.1 counts the number of distinct values that the sum $a+b$ can take as a, b range over A, without taking account of how many times the sum is attained nor whether it lies in the subset A.

The following generalization of the Cauchy-Davenport Theorem provides more infomation which is relevant to counting occurrences of each sum. The special case $j=1$ reduces to the Cauchy-Davenport Theorem.

Theorem 1.2 (Pollard [11]). Let p be prime and let A, B be subsets of \mathbb{Z}_{p} of cardinality s, t, respectively. For $i \geq 1$, let S_{i} be the set of elements of \mathbb{Z}_{p} expressible in at least i ways in the form $a+b$ for $a \in A$ and $b \in B$. Then

$$
\sum_{i=1}^{j}\left|S_{i}\right| \geq j \min (p, s+t-j) \quad \text { for } 1 \leq j \leq \min (s, t)
$$

Theorem 1.2 was a crucial tool in the proof of [9, Theorem 3.6], which used linear programming to determine the minimum and maximum value of $r(A)$ when A is a subset of fixed cardinality in \mathbb{Z}_{p}. The following theorem summarizes results from [9].

Theorem 1.3 (Huczynska, Mullen, Yucas [9]). Let p be an odd prime and let $1 \leq s \leq p-1$. Let

$$
\begin{aligned}
& f_{s}= \begin{cases}0 & \text { for } s \leq \frac{p+1}{3} \\
\left\lfloor\frac{(3 s-p)^{2}}{4}\right\rfloor & \text { for } \frac{p+2}{3} \leq s\end{cases} \\
& g_{s}= \begin{cases}\left.\left\lvert\, \frac{3 s^{2}}{4}\right.\right\rceil & \text { for } s \leq \frac{2 p+1}{3} \\
s(2 s-p)+(p-s)^{2} & \text { for } \frac{2 p+2}{3} \leq s\end{cases}
\end{aligned}
$$

Then
(i) As A ranges over all subsets of \mathbb{Z}_{p} of cardinality s, we have

$$
f_{s} \leq r(A) \leq g_{s}
$$

(ii) The values f_{s} and g_{s} for $r(A)$ can each be attained by a set A that is an interval of s consecutive elements of \mathbb{Z}_{p}.
(iii) For certain p and s, there is at least one value in the interval $\left(f_{s}, g_{s}\right)$ which is not attainable as $r(A)$ for a subset A of \mathbb{Z}_{p} of cardinality s.

The actual spectrum of possible values of $r(A)$ in the setting of Theorem 1.3 was conjectured but not resolved in [9]. For $p>11$, not all attainable values of $r(A)$ (found by computer search) were explained by constructions in [9].

Samotij and Sudakov [12] obtained similar results to Theorem 1.3 for various abelian groups, including elementary abelian groups and \mathbb{Z}_{p}, using a different proof to that of [9]. They also showed that a subset of the group \mathbb{Z}_{p} achieving the minimum value f_{s} (when this is nonzero) must be an arithmetic progression. Bajnok [1] proposed to generalize from counting Schur triples to counting $(s+1)$-tuples, and suggested the case $G=\mathbb{Z}_{p}$ as a first step. This case was addressed by Chervak, Pikhurko and Staden [4], who showed that extremal configurations exist with all sets consisting of intervals.

In this paper we consider a different generalization of Schur triples. Let A, B be subsets of a group G of cardinality s, t, respectively, and let $r(A, B, B)$ be the number of additive triples
in G, namely elements of the form $(a, b, a+b) \in A \times B \times B$. (Note that $r(A, A, A)$ is identical to $r(A)$ as used above.) For given s, t, what is the spectrum of possible values of $r(A, B, B)$? This generalization of Schur triples is not only natural, it is also closer to the setting of the Cauchy-Davenport Theorem than is the special case $A=B$. We shall always take $G=\mathbb{Z}_{p}$, where p is an odd prime.

Our main result is Theorem 1.4, which determines the smallest and largest value of $r(A, B, B)$ as a function of s, t, and shows that (in contrast to the special case $A=B$) every intermediate value can be attained by $r(A, B, B)$.

Theorem 1.4 (Main Theorem). Let p be an odd prime and let $1 \leq s, t \leq p-1$. Let

$$
\begin{align*}
& f(s, t)= \begin{cases}0 & \text { for } 2 t \leq p-s+1 \\
\left\lfloor\frac{(s+2 t-p)^{2}}{4}\right\rfloor & \text { for } p-s+2 \leq 2 t \leq p+s-2 \\
s(2 t-p) & \text { for } p+s-1 \leq 2 t\end{cases} \tag{1}\\
& g(s, t)= \begin{cases}t^{2} & \text { for } 2 t \leq s \\
\left\lceil\frac{s(4 t-s)}{4}\right\rceil & \text { for } s+1 \leq 2 t \leq 2 p-s-1, \\
s(2 t-p)+(p-t)^{2} & \text { for } 2 p-s \leq 2 t\end{cases} \tag{2}
\end{align*}
$$

The set of values taken by $r(A, B, B)$ as A, B range over all subsets of \mathbb{Z}_{p} of cardinality s, t, respectively, is the closed integer interval $[f(s, t), g(s, t)]$.

In Section 3 we shall show (for an odd prime p) that $f(s, t) \leq r(A, B, B) \leq g(s, t)$ for all subsets A, B of \mathbb{Z}_{p} of cardinality s, t, respectively. In Section 4 we shall show (for an odd although not necessarily prime p) that for each integer $r \in[f(s, t), g(s, t)]$ and for $B=\{0,1, \ldots, t-1\}$, there is a subset A of \mathbb{Z}_{p} of cardinality s for which $r(A, B, B)=r$. Combining these results proves Theorem 1.4.

It is interesting to note that, while the relaxation from Schur triples to additive triples yields a spectrum of values of $r(A, B, B)$ which no longer has any "missing values" between the minimum and maximum, the actual values of the minimum and maximum for $r(A, B, B)$ with $|A|=|B|=s$ are precisely the same as the minimum and maximum of $r(A, A, A)$ with $|A|=s$. Indeed, we see from (1) that

$$
\begin{aligned}
f(s, s) & = \begin{cases}0 & \text { for } s \leq \frac{p+1}{3} \\
\left\lfloor\frac{(3 s-p)^{2}}{4}\right\rfloor & \text { for } \frac{p+2}{3} \leq s \leq p-2, \\
s(2 s-p) & \text { for } s=p-1\end{cases} \\
& =f_{s}
\end{aligned}
$$

by combining the domain $s=p-1$ with the domain $\frac{p+2}{3} \leq s \leq p-2$. We also see from (2) that

$$
\begin{aligned}
g(s, s) & = \begin{cases}\left\lceil\frac{3 s^{2}}{4}\right\rceil & \text { for } s \leq \frac{2 p-1}{3} \\
s(2 s-p)+(p-s)^{2} & \text { for } \frac{2 p}{3} \leq s\end{cases} \\
& =g_{s}
\end{aligned}
$$

by transferring the cases where $s=\frac{2 p}{3}$ or $s=\frac{2 p+1}{3}$ is an integer from the domain $\frac{2 p}{3} \leq s$ to the domain $s \leq \frac{2 p-1}{3}$.

2 Preliminary results

In this section we obtain some preliminary results for additive triples in a group G (not necessarily \mathbb{Z}_{p}). We firstly derive two expressions for $r(A, B, B)$.

Proposition 2.1. Let G be a group and let A, B be subsets of G.
(i) We have

$$
r(A, B, B)=\sum_{a \in A}|(a+B) \cap B| .
$$

(ii) For each $i \geq 1$, let S_{i} be the set of elements of G expressible in at least i ways in the form $a+b$ for $a \in A$ and $b \in B$. Then

$$
r(A, B, B)=\sum_{i \geq 1}\left|S_{i} \cap B\right| .
$$

Proof.
(i) By definition,

$$
\begin{aligned}
r(A, B, B) & =|\{(a, b, a+b): a \in A, b \in B, a+b \in B\}| \\
& =\sum_{a \in A}|\{b: b \in B, a+b \in B\}| \\
& =\sum_{a \in A}|(a+B) \cap B| .
\end{aligned}
$$

(ii) Fix $c \in B$ and consider the set $X(c)$ of triples of the form $(a, b, a+b) \in A \times B \times B$ for which $a+b=c$. We prove the required equality by showing that the triples of $X(c)$ contribute equally to the left hand side and the right hand side. The contribution to the left hand side is $|X(c)|$. The contribution to $\left|S_{i} \cap B\right|$ is 1 for each i satisfying $1 \leq i \leq|X(c)|$ and is 0 for each $i>|X(c)|$, giving a total contribution to the right hand side of $|X(c)|$.

Write \bar{A} for the complement of a subset A in a group G. We now give a relationship between $r(A, B, B)$ and $r(\bar{A}, \bar{B}, \bar{B})$.

Theorem 2.2. Let A, B be subsets of a group G. Then

$$
r(A, B, B)+r(\bar{A}, \bar{B}, \bar{B})=|A| \cdot|B|-|A| \cdot|\bar{B}|+|\bar{B}|^{2} .
$$

Proof. We calculate

$$
\begin{aligned}
& r(A, B, B)+r(\bar{A}, \bar{B}, \bar{B}) \\
& \quad=(r(A, B, B)+r(A, B, \bar{B}))-(r(A, B, \bar{B})+r(A, \bar{B}, \bar{B}))+(r(A, \bar{B}, \bar{B})+r(\bar{A}, \bar{B}, \bar{B})) \\
& \quad=|A| \cdot|B|-|A| \cdot|\bar{B}|+|\bar{B}|^{2}
\end{aligned}
$$

by definition of $r(A, B, B)$.

3 Establishing the lower and upper bounds

In this section we prove Theorem 3.1 below, which establishes a lower and upper bound on the value of $r(A, B, B)$ for all subsets A and B.

Theorem 3.1. Let p be an odd prime, let $1 \leq s, t \leq p-1$, and let A, B be subsets of \mathbb{Z}_{p} of cardinality s, t, respectively. Let $f(s, t)$ and $g(s, t)$ be the functions defined in (1) and (2). Then $f(s, t) \leq r(A, B, B) \leq g(s, t)$.

Proof. We make the following claim, which will be proved subsequently:

$$
\begin{equation*}
r(X, Y, Y) \geq f(|X|,|Y|) \quad \text { for all subsets } X, Y \text { of } \mathbb{Z}_{p} . \tag{3}
\end{equation*}
$$

Given this claim, by Theorem 2.2 we have

$$
\begin{align*}
r(A, B, B) & =s t-s(p-t)+(p-t)^{2}-r(\bar{A}, \bar{B}, \bar{B}) \\
& \leq s t-s(p-t)+(p-t)^{2}-f(p-s, p-t) \tag{4}
\end{align*}
$$

using the case $(X, Y)=(\bar{A}, \bar{B})$ of (3). By definition of f, we have

$$
f(p-s, p-t)= \begin{cases}(p-s)(p-2 t) & \text { for } 2 t \leq s+1 \\ \left\lfloor\frac{(2 p-s-2 t)^{2}}{4}\right\rfloor & \text { for } s+2 \leq 2 t \leq 2 p-s-2 \\ 0 & \text { for } 2 p-s-1 \leq 2 t\end{cases}
$$

and we may adjust the three ranges for $2 t$ to give the equivalent form

$$
f(p-s, p-t)= \begin{cases}(p-s)(p-2 t) & \text { for } 2 t \leq s \\ \left\lfloor\frac{(2 p-s-2 t)^{2}}{4}\right\rfloor & \text { for } s+1 \leq 2 t \leq 2 p-s-1, \\ 0 & \text { for } 2 p-s \leq 2 t\end{cases}
$$

Substitution in (4) and straightforward calculation then gives

$$
r(A, B, B) \leq g(s, t)
$$

which combines with the case $(X, Y)=(A, B)$ of (3) to give the required result.
It remains to prove the claim (3) by showing that $r(A, B, B) \geq f(s, t)$. Our argument is inspired by that used in the proof of [12, Theorem 1.3]. For $i \geq 1$, let S_{i} be the set of elements of \mathbb{Z}_{p} expressible in at least i ways in the form $a+b$ for $a \in A$ and $b \in B$. By Proposition 2.1(ii), for $j \geq 1$ we have

$$
\begin{aligned}
r(A, B, B) & \geq \sum_{i=1}^{j}\left|S_{i} \cap B\right| \\
& \geq \sum_{i=1}^{j}\left(\left|S_{i}\right|-|\bar{B}|\right)
\end{aligned}
$$

using the set inequality $\left|S_{i} \cap B\right|+|\bar{B}| \geq\left|S_{i}\right|$. Theorem 1.2 then gives

$$
\begin{equation*}
r(A, B, B) \geq j \min (p, s+t-j)-j(p-t) \quad \text { for } 1 \leq j \leq \min (s, t) \tag{5}
\end{equation*}
$$

Case 1: $2 t \leq p-s+1$. In this range, $r(A, B, B) \geq 0$ trivially.

Case 2: $p-s+2 \leq 2 t \leq p+s-2$. In this range, the value $j=\left\lceil\frac{s+2 t-p}{2}\right\rceil$ satisfies $1 \leq j<$ $\min (s, t)$ and $s+t-j<p$, so substitution in (5) gives

$$
\begin{aligned}
r(A, B, B) & \geq j(s+t-j)-j(p-t) \\
& =j(s+2 t-p-j) \\
& =\left\lfloor\frac{(s+2 t-p)^{2}}{4}\right\rfloor .
\end{aligned}
$$

Case 3: $p+s-1 \leq 2 t$. In this range, the value $j=s$ satisfies $1 \leq j \leq \min (s, t)$ and $s+t-j<$ p, so substitution in (5) gives

$$
\begin{aligned}
r(A, B, B) & \geq j(s+t-j)-j(p-t) \\
& =s(2 t-p)
\end{aligned}
$$

Combining results for Cases 1,2 , and 3 proves that $r(A, B, B) \geq f(s, t)$, as required.

4 Achieving the spectrum constructively

In this section we constructively prove Theorem 4.1 below, which shows that each integer value r in the closed interval $[f(s, t), g(s, t)]$ is an attainable value of $r(A, B, B)$ for some choice of subsets A and B. The construction takes p to be odd but does not require p to be prime.

Theorem 4.1. Let p be an odd integer, let $1 \leq s, t \leq p-1$, and let $B=\{0,1, \ldots, t-1\}$. Let $f(s, t)$ and $g(s, t)$ be the functions defined in (1) and (2), and let $r \in[f(s, t), g(s, t)]$. Then there is a subset A of \mathbb{Z}_{p} of cardinality s for which $r(A, B, B)=r$.

We shall use a visual representation of a multiset involving balls and urns. For example, Figure 1(a) represents the multiset comprising $p-2 t+1$ elements 0 , two elements each of $1,2, \ldots, t-1$, and one element t. We firstly use Proposition $2.1(i)$ to transform the condition $r(A, B, B)=r$ into an equivalent statement involving the multiset in Figure 1.

Lemma 4.2. Let p be an odd integer, let s, t be integers satisfying $1 \leq s, t \leq p-1$, and let $B=\{0,1, \ldots, t-1\}$. Then there is a subset A of \mathbb{Z}_{p} of cardinality s for which $r(A, B, B)=r$ if and only if the multiset M represented in Figure 1 contains a multi-subset of cardinality s whose elements sum to r.

Proof. Regard \mathbb{Z}_{p} as having representatives $\left\{0, \pm 1, \pm 2, \ldots, \pm\left(\frac{p-1}{2}\right)\right\}$, and let A be a subset of \mathbb{Z}_{p}. We make the following claim, which will be proved subsequently: for $a \in\left\{0,1, \ldots, \frac{p-1}{2}\right\}$,

$$
|(a+B) \cap B|=|(-a+B) \cap B|= \begin{cases}\max (0, t-a) & \text { for } 2 t \leq p-1 \tag{6}\\ \max (t-a, 2 t-p) & \text { for } 2 t \geq p+1\end{cases}
$$

Given this claim, as a ranges over $\mathbb{Z}_{p}=\left\{0, \pm 1, \pm 2, \ldots, \pm\left(\frac{p-1}{2}\right)\right\}$, the size of the intersection $\mid(a+$ $B) \cap B \mid$ takes each value in the multiset M (having cardinality p) exactly once. It then follows from Proposition $2.1(i)$ that there is a subset A of \mathbb{Z}_{p} of cardinality s for which $r(A, B, B)=r$ if and only if M contains a multi-subset of cardinality s whose elements sum to r.

It remains to prove the claim. Let $a \in\left\{0,1, \ldots, \frac{p-1}{2}\right\}$. It is sufficient to prove that $\mid(a+B) \cap$ $B \mid$ takes the form stated in (6), because $|(-a+B) \cap B|=|(a+(-a+B)) \cap(a+B)|=|B \cap(a+B)|$.

(a) The case $2 t \leq p-1$

(b) The case $2 t \geq p+1$

Figure 1: The multiset M, according to whether $2 t \leq p-1$ or $2 t \geq p+1$.

Case 1: $2 t \leq p-1$. Since $a+t-1 \leq \frac{p-1}{2}+\frac{p-1}{2}-1<p$, we have $a+B=\{a, a+1, \ldots, a+t-1\}$ (in which reduction modulo p is not necessary) and so

$$
|(a+B) \cap B|=|\{a, a+1, \ldots, t-1\}|=\max (0, t-a),
$$

as required.
Case 2: $2 t \geq p+1$. We have

$$
a+B= \begin{cases}\{a, a+1, \ldots, a+t-1\} & \text { for } a+t-1 \leq p-1, \\ \{a, a+1, \ldots, p-1\} \cup\{0,1, \ldots, a+t-1-p\} & \text { for } a+t-1 \geq p\end{cases}
$$

and so

$$
\begin{aligned}
|(a+B) \cap B| & = \begin{cases}t-a & \text { for } a+t-1 \leq p-1, \\
(t-a)+(a+t-p) & \text { for } a+t-1 \geq p\end{cases} \\
& =\max (t-a, 2 t-p),
\end{aligned}
$$

as required.
Combining results for Cases 1 and 2 proves the claim.
The following counting result is straightforward to verify.
Lemma 4.3. Let n, u be integers, where $1 \leq n \leq 2 u-1$. Let S be the multiset

$$
\{1,1,2,2, \ldots, u-1, u-1\} \cup\{u\} .
$$

Then the sum of the n smallest elements of S is $\left\lfloor\frac{(n+1)^{2}}{4}\right\rfloor$ and the sum of the n largest elements of S is $\left\lceil\frac{n(4 u-n)}{4}\right\rceil$.

We now have the necessary ingredients to prove Theorem 4.1.
Proof of Theorem 4.1. We consider the odd integer p and the integers s, t satisfying $1 \leq s, t \leq$ $p-1$ to be fixed. Let M be the multiset represented in Figure 1, in which we distinguish the cases $2 t \leq p-1$ and $2 t \geq p+1$. We make the following claim, which will be proved subsequently: the sum r_{1} of the s smallest elements of M and the sum r_{2} of the s largest elements of M are given in the following table.

	$2 t \leq p-1$	$2 t \geq p+1$
r_{1}	$\left\{\begin{array}{ll}\begin{array}{l}0 \\ \left.\left\lvert\, \frac{(s+2 t-p)^{2}}{4}\right.\right] \\ \text { for } p-2 t+2 \leq s\end{array} & \text { for } s \leq p-2 t+1, \\ r_{2} & \begin{cases}\left\lfloor\frac{s(4 t-s)}{4}\right\rceil & \text { for } s \leq 2 t-1, \\ t^{2} & \text { for } 2 t \leq s\end{cases} \end{array} \begin{cases}\left\lfloor\frac{(s+2 t-p)^{2}}{4}\right] & \text { for } s \leq 2 t-p+1, \\ \text { for } 2 t-p+2 \leq s\end{cases} \right.$	
$\left.\frac{s(4 t-s)}{4}\right\rceil$	for $s \leq 2 p-2 t-1$,	
$s(2 t-p)+(p-t)^{2}$	for $2 p-2 t \leq s$	

Given this claim, it then follows that for each integer $r \in\left[r_{1}, r_{2}\right]$ there is a multi-subset of M of cardinality s whose elements sum to r : transform the multi-subset whose elements sum to r_{1} into the multi-subset whose elements sum to r_{2} by repeatedly moving some ball one urn to the right until the correct number of balls is contained in urn t, then in urn $t-1$, and so on. By Lemma 4.2, for each integer $r \in\left[r_{1}, r_{2}\right]$ and for $B=\{0,1, \ldots, t-1\}$ there is therefore a subset A of \mathbb{Z}_{p} of cardinality s for which $r(A, B, B)=r$. The ranges for s, t in the above table can be rewritten to emphasize the value of $2 t$ rather than s, and the intervals $\left[r_{1}, r_{2}\right]$ for the cases $2 t \leq p-1$ and $2 t \geq p+1$ then combined to give the interval [$f(s, t), g(s, t)$] described in Theorem 4.1.

It remains to prove the claim.
Case 1: $2 t \leq p-1$. See Figure 1(a).
The sum r_{1}. If $s \leq p-2 t+1$ then the s smallest elements of M are each 0 , so $r_{1}=0$.
Otherwise the sum of the s smallest elements of M is the sum of the first $s-(p-2 t+1)$ elements of the multiset $\{1,1,2,2, \ldots t-1, t-1\} \cup\{t\}$, which by Lemma 4.3 (with $u=t$ and $n=s-(p-2 t+1))$ equals $\left\lfloor\frac{(s+2 t-p)^{2}}{4}\right\rfloor$.
The sum r_{2}. If $s \leq 2 t-1$ then the sum of the s largest elements of M is the sum of the s largest elements of the multiset $\{1,1,2,2, \ldots t-1, t-1\} \cup\{t\}$, which by Lemma 4.3 (with $u=t$ and $n=s$) equals $\left\lceil\frac{s(4 t-s)}{4}\right\rceil$.
Otherwise the sum of the s largest elements of M is the sum of all elements of the multiset $\{1,1,2,2, \ldots, t-1, t-1\} \cup\{t\}$, which equals t^{2}.

Case 2: $2 t \geq p+1$. See Figure 1(b).
The sum r_{1}. If $s \leq 2 t-p+1$ then the s smallest elements of M are each $2 t-p$, so $r_{1}=s(2 t-p)$.
Otherwise the sum of the s smallest elements of M is $s(2 t-p)$ plus the sum of the first $s-(2 t-p+1)$ elements of the multiset $\{1,1,2,2, \ldots, p-t-1, p-t-1\} \cup\{p-t\}$, which by Lemma 4.3 (with $u=p-t$ and $n=s-(2 t-p+1)$) equals $s(2 t-p)+\left\lfloor\frac{(s-2 t+p)^{2}}{4}\right\rfloor=$ $\left\lfloor\frac{(s+2 t-p)^{2}}{4}\right\rfloor$.

The sum r_{2}. If $s \leq 2 p-2 t-1$ then the sum of the s largest elements of M is the sum of the s largest elements of the multiset $\{1,1,2,2, \ldots, t-1, t-1\} \cup\{t\}$, which by Lemma 4.3 (with $u=t$ and $n=s$) equals $\left\lceil\frac{s(4 t-s)}{4}\right\rceil$.
Otherwise the sum of the s largest elements of M is $s(2 t-p)$ plus the sum of all elements of the multiset $\{1,1,2,2, \ldots, p-t-1, p-t-1\} \cup\{p-t\}$, which equals $s(2 t-p)+(p-t)^{2}$.

Combining results for Cases 1 and 2 proves the claim.

5 Open questions

Theorem 1.4 gives complete information about the spectrum of $r(A, B, B)$ for subsets A, B of \mathbb{Z}_{p} of cardinality s, t, respectively, for an odd prime p.

What happens when p is not prime? For example, for $p=9$ the interval $[f(7,6), g(7,6)]$ specified by (1) and (2) is [25,30], but the actual set of attainable values of $r(A, B, B)$ is the larger set $\{24\} \cup[25,30]$. In this example, the value $r(A, B, B)=24$ is achieved by $A=$ $\{0,1,2,4,5,7,8\}$ and $B=\{0,1,3,4,6,7\}$; the two-way implication of Lemma 4.2 tells us that this value cannot be achieved by taking B to be the interval $\{0,1,2,3,4,5\}$.

More generally, what can be said about $r(A, B, B)$ when G is not a cyclic group?

References

[1] B. Bajnok, Additive Combinatorics: A Menu of Research Problems, CRC Press, Roca Baton, FL, 2018.
[2] P.J. Cameron, P. Erdős, On the number of sets of integers with various properties, in: Number Theory, Banff, AB, 1988, de Gruyter, Berlin, 1990, pp. 61-79.
[3] A.L. Cauchy, Recherches sur les nombres, Journal de l'École Polytechnique vol. 9 (1813), pp. 99-116.
[4] O. Chervak, O. Pikhurko and K. Staden, Minimum number of additive tuples in groups of prime order, Electron. J. Combin. vol. 26 (2019), no. 1, Paper No. 1.30, 15 pages.
[5] H. Davenport, On the addition of residue classes, J. London Math. Soc. vol. 10 (1935), pp. 30-32.
[6] P. Erdős, Extremal problems in number theory, Proc. Sympos. Pure Math. Vol. VIII, Amer. Math. Soc., Providence, R.I., 1965, pp. 181-189.
[7] B. Green, The Cameron-Erdős conjecture, Bull. London Math. Soc. vol. 36 (2004) pp. 769-778.
[8] B. Green and I. Z. Ruzsa, Sum-free sets in abelian groups, Israel J. Math. vol. 147 (2005), pp. 157-188.
[9] S. Huczynska, G. L. Mullen and J. L. Yucas, The extent to which subsets are additively closed, J. Combin. Theory Ser. A vol. 116 (2009), no.4, pp. 831-843.
[10] V. Lev, T. Schoen, Cameron-Erdős modulo a prime, Finite Fields Appl. vol. 8 (2002) pp. 108-119.
[11] J. M. Pollard, Addition properties of residue classes, J. Lond. Math. Soc. vol. 11 (1975), 147-152.
[12] W. Samotij and B. Sudakov, The number of additive triples in subsets of Abelian groups, Math. Proc. Camb. Phil. Soc. vol. 160 (2016), pp. 495-512.
[13] I. Schur, Uber die Kongruenz $x^{m}+y^{m} \equiv z^{m}(\bmod p)$, Jber. Deutch. Mat. Verein. vol. 25 (1916), pp. 114-117.
[14] A. A. Sapozhenko, The Cameron-Erdős conjecture (Russian), Dokl. Akad. Nauk vol. 393 (2003), no.6, pp. 749-752.

[^0]: S. Huczynska and L. Johnson are with School of Mathematics and Statistics, University of St Andrews, Mathematical Institute, North Haugh, St Andrews KY16 9SS, Scotland. Email: sh70@st-andrews.ac.uk, lj68@st-andrews.ac.uk
 J. Jedwab is with Department of Mathematics, Simon Fraser University, 8888 University Drive, Burnaby BC V5A 1S6, Canada. Email: jed@sfu.ca
 S. Huczynska was funded by EPSRC grant EP/X021157/1. J. Jedwab is supported by NSERC.

