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Abstract

Let p be an odd prime. For nontrivial proper subsets A,B of Zp of cardinality s, t,
respectively, we count the number r(A,B,B) of additive triples, namely elements of the
form (a, b, a + b) in A × B × B. For given s, t, what is the spectrum of possible values for
r(A,B,B)? In the special case A = B, the additive triple is called a Schur triple. Various
authors have given bounds on the number r(A,A,A) of Schur triples, and shown that the
lower and upper bound can each be attained by a set A that is an interval of s consecutive
elements of Zp. However, there are values of p, s for which not every value between the
lower and upper bounds is attainable. We consider here the general case where A,B can
be distinct. We use Pollard’s generalization of the Cauchy-Davenport Theorem to derive
bounds on the number r(A,B,B) of additive triples. In contrast to the case A = B, we
show that every value of r(A,B,B) from the lower bound to the upper bound is attainable:
each such value can be attained when B is an interval of t consecutive elements of Zp.

1 Introduction

Let G be an additive group. A Schur triple in a subset A of G is a triple of the form (a, b, a+b) ∈
A3; Schur triples were originally considered only in the case G = Z [13]. Let r(A) be the number
of Schur triples in A. Several authors have studied the behaviour of r(A) as A ranges over some
or all subsets of a group G, and the nature of the subsets A attaining a particular value of r(A).

A sum-free set A is one for which r(A) = 0, and has received much attention. The Cameron-
Erdős Conjecture [2] concerns the number of sum-free sets in {1, 2, . . . , n} ⊂ Z; this was resolved
independently by Green [7] and Sapozhenko [14]. Lev and Schoen [10] studied the number of
sum-free sets when G is a group of prime order. Erdős [6] asked what is the largest size of a
sum-free set in an abelian group; this question was considered by Green and Ruzsa [8].

A popular problem is to determine the minimum and maximum value of r(A) over all
subsets A of fixed cardinality in a specified group G. The case G = Zp for a prime p is of
particular interest, in part because of its relation to sumset results such as the Cauchy-Davenport
Theorem [3, 5]. We use the set notation a+B := {a+ b : b ∈ B} and A+B := {a+B : a ∈ A}.

Theorem 1.1 (Cauchy-Davenport Theorem [3, 5]). Let p be prime and let A,B be non-empty
subsets of Zp. Then |A+B| ≥ min(p, |A|+ |B| − 1).
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The special case A = B of Theorem 1.1 counts the number of distinct values that the sum
a + b can take as a, b range over A, without taking account of how many times the sum is
attained nor whether it lies in the subset A.

The following generalization of the Cauchy-Davenport Theorem provides more infomation
which is relevant to counting occurrences of each sum. The special case j = 1 reduces to the
Cauchy-Davenport Theorem.

Theorem 1.2 (Pollard [11]). Let p be prime and let A,B be subsets of Zp of cardinality s, t,
respectively. For i ≥ 1, let Si be the set of elements of Zp expressible in at least i ways in the
form a+ b for a ∈ A and b ∈ B. Then

j∑
i=1

|Si| ≥ j min(p, s+ t− j) for 1 ≤ j ≤ min(s, t).

Theorem 1.2 was a crucial tool in the proof of [9, Theorem 3.6], which used linear programming
to determine the minimum and maximum value of r(A) when A is a subset of fixed cardinality
in Zp. The following theorem summarizes results from [9].

Theorem 1.3 (Huczynska, Mullen, Yucas [9]). Let p be an odd prime and let 1 ≤ s ≤ p − 1.
Let

fs =

{
0 for s ≤ p+1

3 ,⌊
(3s−p)2

4

⌋
for p+2

3 ≤ s,

gs =

{⌈
3s2

4

⌉
for s ≤ 2p+1

3 ,

s(2s− p) + (p− s)2 for 2p+2
3 ≤ s.

Then

(i) As A ranges over all subsets of Zp of cardinality s, we have

fs ≤ r(A) ≤ gs.

(ii) The values fs and gs for r(A) can each be attained by a set A that is an interval of s
consecutive elements of Zp.

(iii) For certain p and s, there is at least one value in the interval (fs, gs) which is not attainable
as r(A) for a subset A of Zp of cardinality s.

The actual spectrum of possible values of r(A) in the setting of Theorem 1.3 was conjectured
but not resolved in [9]. For p > 11, not all attainable values of r(A) (found by computer search)
were explained by constructions in [9].

Samotij and Sudakov [12] obtained similar results to Theorem 1.3 for various abelian groups,
including elementary abelian groups and Zp, using a different proof to that of [9]. They also
showed that a subset of the group Zp achieving the minimum value fs (when this is nonzero)
must be an arithmetic progression. Bajnok [1] proposed to generalize from counting Schur
triples to counting (s+ 1)-tuples, and suggested the case G = Zp as a first step. This case was
addressed by Chervak, Pikhurko and Staden [4], who showed that extremal configurations exist
with all sets consisting of intervals.

In this paper we consider a different generalization of Schur triples. Let A,B be subsets of
a group G of cardinality s, t, respectively, and let r(A,B,B) be the number of additive triples
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in G, namely elements of the form (a, b, a+ b) ∈ A×B ×B. (Note that r(A,A,A) is identical
to r(A) as used above.) For given s, t, what is the spectrum of possible values of r(A,B,B)?
This generalization of Schur triples is not only natural, it is also closer to the setting of the
Cauchy-Davenport Theorem than is the special case A = B. We shall always take G = Zp,
where p is an odd prime.

Our main result is Theorem 1.4, which determines the smallest and largest value of r(A,B,B)
as a function of s, t, and shows that (in contrast to the special case A = B) every intermediate
value can be attained by r(A,B,B).

Theorem 1.4 (Main Theorem). Let p be an odd prime and let 1 ≤ s, t ≤ p− 1. Let

f(s, t) =


0 for 2t ≤ p− s+ 1,⌊
(s+2t−p)2

4

⌋
for p− s+ 2 ≤ 2t ≤ p+ s− 2,

s(2t− p) for p+ s− 1 ≤ 2t,

(1)

g(s, t) =


t2 for 2t ≤ s,⌈
s(4t−s)

4

⌉
for s+ 1 ≤ 2t ≤ 2p− s− 1,

s(2t− p) + (p− t)2 for 2p− s ≤ 2t.

(2)

The set of values taken by r(A,B,B) as A,B range over all subsets of Zp of cardinality s, t,
respectively, is the closed integer interval [f(s, t), g(s, t)].

In Section 3 we shall show (for an odd prime p) that f(s, t) ≤ r(A,B,B) ≤ g(s, t) for all
subsetsA,B of Zp of cardinality s, t, respectively. In Section 4 we shall show (for an odd although
not necessarily prime p) that for each integer r ∈ [f(s, t), g(s, t)] and for B = {0, 1, . . . , t− 1},
there is a subset A of Zp of cardinality s for which r(A,B,B) = r. Combining these results
proves Theorem 1.4.

It is interesting to note that, while the relaxation from Schur triples to additive triples
yields a spectrum of values of r(A,B,B) which no longer has any “missing values” between the
minimum and maximum, the actual values of the minimum and maximum for r(A,B,B) with
|A| = |B| = s are precisely the same as the minimum and maximum of r(A,A,A) with |A| = s.
Indeed, we see from (1) that

f(s, s) =


0 for s ≤ p+1

3 ,⌊
(3s−p)2

4

⌋
for p+2

3 ≤ s ≤ p− 2,

s(2s− p) for s = p− 1

= fs

by combining the domain s = p−1 with the domain p+2
3 ≤ s ≤ p−2. We also see from (2) that

g(s, s) =

{⌈
3s2

4

⌉
for s ≤ 2p−1

3 ,

s(2s− p) + (p− s)2 for 2p
3 ≤ s

= gs

by transferring the cases where s = 2p
3 or s = 2p+1

3 is an integer from the domain 2p
3 ≤ s to the

domain s ≤ 2p−1
3 .
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2 Preliminary results

In this section we obtain some preliminary results for additive triples in a group G (not neces-
sarily Zp). We firstly derive two expressions for r(A,B,B).

Proposition 2.1. Let G be a group and let A,B be subsets of G.

(i) We have

r(A,B,B) =
∑
a∈A

∣∣(a+B) ∩B
∣∣.

(ii) For each i ≥ 1, let Si be the set of elements of G expressible in at least i ways in the form
a+ b for a ∈ A and b ∈ B. Then

r(A,B,B) =
∑
i≥1

|Si ∩B|.

Proof.

(i) By definition,

r(A,B,B) =
∣∣{(a, b, a+ b) : a ∈ A, b ∈ B, a+ b ∈ B}

∣∣
=

∑
a∈A

∣∣{b : b ∈ B, a+ b ∈ B}
∣∣

=
∑
a∈A

∣∣(a+B) ∩B
∣∣.

(ii) Fix c ∈ B and consider the set X(c) of triples of the form (a, b, a+b) ∈ A×B×B for which
a+ b = c. We prove the required equality by showing that the triples of X(c) contribute
equally to the left hand side and the right hand side. The contribution to the left hand
side is |X(c)|. The contribution to |Si ∩B| is 1 for each i satisfying 1 ≤ i ≤ |X(c)| and is
0 for each i > |X(c)|, giving a total contribution to the right hand side of |X(c)|.

Write A for the complement of a subset A in a group G. We now give a relationship between
r(A,B,B) and r(A,B,B).

Theorem 2.2. Let A,B be subsets of a group G. Then

r(A,B,B) + r(A,B,B) = |A| · |B| − |A| · |B|+ |B|2.

Proof. We calculate

r(A,B,B) + r(A,B,B)

=
(
r(A,B,B) + r(A,B,B)

)
−
(
r(A,B,B) + r(A,B,B)

)
+
(
r(A,B,B) + r(A,B,B)

)
= |A| · |B| − |A| · |B|+ |B|2

by definition of r(A,B,B).
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3 Establishing the lower and upper bounds

In this section we prove Theorem 3.1 below, which establishes a lower and upper bound on the
value of r(A,B,B) for all subsets A and B.

Theorem 3.1. Let p be an odd prime, let 1 ≤ s, t ≤ p − 1, and let A,B be subsets of Zp of
cardinality s, t, respectively. Let f(s, t) and g(s, t) be the functions defined in (1) and (2). Then
f(s, t) ≤ r(A,B,B) ≤ g(s, t).

Proof. We make the following claim, which will be proved subsequently:

r(X,Y, Y ) ≥ f(|X|, |Y |) for all subsets X,Y of Zp. (3)

Given this claim, by Theorem 2.2 we have

r(A,B,B) = st− s(p− t) + (p− t)2 − r(A,B,B)

≤ st− s(p− t) + (p− t)2 − f(p− s, p− t) (4)

using the case (X,Y ) = (A,B) of (3). By definition of f , we have

f(p− s, p− t) =


(p− s)(p− 2t) for 2t ≤ s+ 1,⌊
(2p−s−2t)2

4

⌋
for s+ 2 ≤ 2t ≤ 2p− s− 2,

0 for 2p− s− 1 ≤ 2t,

and we may adjust the three ranges for 2t to give the equivalent form

f(p− s, p− t) =


(p− s)(p− 2t) for 2t ≤ s,⌊
(2p−s−2t)2

4

⌋
for s+ 1 ≤ 2t ≤ 2p− s− 1,

0 for 2p− s ≤ 2t.

Substitution in (4) and straightforward calculation then gives

r(A,B,B) ≤ g(s, t),

which combines with the case (X,Y ) = (A,B) of (3) to give the required result.
It remains to prove the claim (3) by showing that r(A,B,B) ≥ f(s, t). Our argument is

inspired by that used in the proof of [12, Theorem 1.3]. For i ≥ 1, let Si be the set of elements
of Zp expressible in at least i ways in the form a+b for a ∈ A and b ∈ B. By Proposition 2.1(ii),
for j ≥ 1 we have

r(A,B,B) ≥
j∑

i=1

|Si ∩B|

≥
j∑

i=1

(
|Si| − |B|

)
using the set inequality |Si ∩B|+ |B| ≥ |Si|. Theorem 1.2 then gives

r(A,B,B) ≥ j min(p, s+ t− j)− j(p− t) for 1 ≤ j ≤ min(s, t). (5)

Case 1: 2t ≤ p− s+ 1. In this range, r(A,B,B) ≥ 0 trivially.
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Case 2: p− s+ 2 ≤ 2t ≤ p+ s− 2. In this range, the value j =
⌈
s+2t−p

2

⌉
satisfies 1 ≤ j <

min(s, t) and s+ t− j < p, so substitution in (5) gives

r(A,B,B) ≥ j(s+ t− j)− j(p− t)

= j(s+ 2t− p− j)

=

⌊
(s+ 2t− p)2

4

⌋
.

Case 3: p+ s− 1 ≤ 2t. In this range, the value j = s satisfies 1 ≤ j ≤ min(s, t) and s+ t−j <
p, so substitution in (5) gives

r(A,B,B) ≥ j(s+ t− j)− j(p− t)

= s(2t− p).

Combining results for Cases 1, 2, and 3 proves that r(A,B,B) ≥ f(s, t), as required.

4 Achieving the spectrum constructively

In this section we constructively prove Theorem 4.1 below, which shows that each integer
value r in the closed interval [f(s, t), g(s, t)] is an attainable value of r(A,B,B) for some choice
of subsets A and B. The construction takes p to be odd but does not require p to be prime.

Theorem 4.1. Let p be an odd integer, let 1 ≤ s, t ≤ p− 1, and let B = {0, 1, . . . , t− 1}. Let
f(s, t) and g(s, t) be the functions defined in (1) and (2), and let r ∈ [f(s, t), g(s, t)]. Then
there is a subset A of Zp of cardinality s for which r(A,B,B) = r.

We shall use a visual representation of a multiset involving balls and urns. For example,
Figure 1(a) represents the multiset comprising p − 2t + 1 elements 0, two elements each of
1, 2, . . . , t − 1, and one element t. We firstly use Proposition 2.1(i) to transform the condition
r(A,B,B) = r into an equivalent statement involving the multiset in Figure 1.

Lemma 4.2. Let p be an odd integer, let s, t be integers satisfying 1 ≤ s, t ≤ p − 1, and let
B = {0, 1, . . . , t− 1}. Then there is a subset A of Zp of cardinality s for which r(A,B,B) = r
if and only if the multiset M represented in Figure 1 contains a multi-subset of cardinality s
whose elements sum to r.

Proof. Regard Zp as having representatives
{
0,±1,±2, . . . ,±(p−1

2 )
}
, and let A be a subset

of Zp. We make the following claim, which will be proved subsequently: for a ∈ {0, 1, . . . , p−1
2 },

|(a+B) ∩B| = |(−a+B) ∩B| =

{
max(0, t− a) for 2t ≤ p− 1,

max(t− a, 2t− p) for 2t ≥ p+ 1
. (6)

Given this claim, as a ranges over Zp =
{
0,±1,±2, . . . ,±(p−1

2 )
}
, the size of the intersection |(a+

B) ∩B| takes each value in the multiset M (having cardinality p) exactly once. It then follows
from Proposition 2.1(i) that there is a subset A of Zp of cardinality s for which r(A,B,B) = r
if and only if M contains a multi-subset of cardinality s whose elements sum to r.

It remains to prove the claim. Let a ∈ {0, 1, . . . , p−1
2 }. It is sufficient to prove that |(a+B)∩

B| takes the form stated in (6), because |(−a+B)∩B| = |(a+(−a+B))∩(a+B)| = |B∩(a+B)|.
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p − 2t + 1

1 2

⋮

0

…

tt − 1t − 2

2t − p + 1

2t − p + 1 2t − p + 2

⋮

2t − p

…

tt − 1t − 2

(a) The case 2t ≤ p− 1

p − 2t + 1

1 2

⋮

0

…

tt − 1t − 2

2t − p + 1

2t − p + 1 2t − p + 2

⋮

2t − p

…

tt − 1t − 2

(b) The case 2t ≥ p+ 1

Figure 1: The multiset M , according to whether 2t ≤ p− 1 or 2t ≥ p+ 1.

Case 1: 2t ≤ p− 1. Since a+t−1 ≤ p−1
2 + p−1

2 −1 < p, we have a+B = {a, a+1, . . . , a+t−1}
(in which reduction modulo p is not necessary) and so

|(a+B) ∩B| = |{a, a+ 1, . . . , t− 1}| = max(0, t− a),

as required.

Case 2: 2t ≥ p+ 1. We have

a+B =

{
{a, a+ 1, . . . , a+ t− 1} for a+ t− 1 ≤ p− 1,

{a, a+ 1, . . . , p− 1} ∪ {0, 1, . . . , a+ t− 1− p} for a+ t− 1 ≥ p,

and so

|(a+B) ∩B| =

{
t− a for a+ t− 1 ≤ p− 1,

(t− a) + (a+ t− p) for a+ t− 1 ≥ p

= max(t− a, 2t− p),

as required.

Combining results for Cases 1 and 2 proves the claim.

The following counting result is straightforward to verify.

Lemma 4.3. Let n, u be integers, where 1 ≤ n ≤ 2u− 1. Let S be the multiset

{1, 1, 2, 2, . . . , u− 1, u− 1} ∪ {u}.

Then the sum of the n smallest elements of S is
⌊
(n+1)2

4

⌋
and the sum of the n largest elements

of S is
⌈
n(4u−n)

4

⌉
.
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We now have the necessary ingredients to prove Theorem 4.1.

Proof of Theorem 4.1. We consider the odd integer p and the integers s, t satisfying 1 ≤ s, t ≤
p − 1 to be fixed. Let M be the multiset represented in Figure 1, in which we distinguish the
cases 2t ≤ p−1 and 2t ≥ p+1. We make the following claim, which will be proved subsequently:
the sum r1 of the s smallest elements of M and the sum r2 of the s largest elements of M are
given in the following table.

2t ≤ p− 1 2t ≥ p+ 1

r1

{
0 for s ≤ p− 2t+ 1,⌊
(s+2t−p)2

4

⌋
for p− 2t+ 2 ≤ s

{
s(2t− p) for s ≤ 2t− p+ 1,⌊
(s+2t−p)2

4

⌋
for 2t− p+ 2 ≤ s

r2

{⌈
s(4t−s)

4

⌉
for s ≤ 2t− 1,

t2 for 2t ≤ s

{⌈
s(4t−s)

4

⌉
for s ≤ 2p− 2t− 1,

s(2t− p) + (p− t)2 for 2p− 2t ≤ s

Given this claim, it then follows that for each integer r ∈ [r1, r2] there is a multi-subset of M
of cardinality s whose elements sum to r: transform the multi-subset whose elements sum to
r1 into the multi-subset whose elements sum to r2 by repeatedly moving some ball one urn to
the right until the correct number of balls is contained in urn t, then in urn t − 1, and so on.
By Lemma 4.2, for each integer r ∈ [r1, r2] and for B = {0, 1, . . . , t − 1} there is therefore a
subset A of Zp of cardinality s for which r(A,B,B) = r. The ranges for s, t in the above table
can be rewritten to emphasize the value of 2t rather than s, and the intervals [r1, r2] for the
cases 2t ≤ p− 1 and 2t ≥ p+ 1 then combined to give the interval [f(s, t), g(s, t)] described in
Theorem 4.1.

It remains to prove the claim.

Case 1: 2t ≤ p− 1. See Figure 1(a).

The sum r1. If s ≤ p− 2t+ 1 then the s smallest elements of M are each 0, so r1 = 0.

Otherwise the sum of the s smallest elements ofM is the sum of the first s−(p−2t+1)
elements of the multiset {1, 1, 2, 2, . . . t− 1, t− 1} ∪ {t}, which by Lemma 4.3 (with

u = t and n = s− (p− 2t+ 1)) equals
⌊
(s+2t−p)2

4

⌋
.

The sum r2. If s ≤ 2t−1 then the sum of the s largest elements of M is the sum of the s
largest elements of the multiset {1, 1, 2, 2, . . . t− 1, t− 1} ∪ {t}, which by Lemma 4.3

(with u = t and n = s) equals
⌈
s(4t−s)

4

⌉
.

Otherwise the sum of the s largest elements of M is the sum of all elements of the
multiset {1, 1, 2, 2, . . . , t− 1, t− 1} ∪ {t}, which equals t2.

Case 2: 2t ≥ p+ 1. See Figure 1(b).

The sum r1. If s ≤ 2t − p + 1 then the s smallest elements of M are each 2t − p, so
r1 = s(2t− p).

Otherwise the sum of the s smallest elements ofM is s(2t−p) plus the sum of the first
s−(2t−p+1) elements of the multiset {1, 1, 2, 2, . . . , p−t−1, p−t−1}∪{p−t}, which
by Lemma 4.3 (with u = p−t and n = s−(2t−p+1)) equals s(2t−p)+

⌊
(s−2t+p)2

4

⌋
=⌊

(s+2t−p)2

4

⌋
.
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The sum r2. If s ≤ 2p− 2t− 1 then the sum of the s largest elements of M is the sum
of the s largest elements of the multiset {1, 1, 2, 2, . . . , t − 1, t − 1} ∪ {t}, which by

Lemma 4.3 (with u = t and n = s) equals
⌈
s(4t−s)

4

⌉
.

Otherwise the sum of the s largest elements of M is s(2t − p) plus the sum of all
elements of the multiset {1, 1, 2, 2, . . . , p − t − 1, p − t − 1} ∪ {p − t}, which equals
s(2t− p) + (p− t)2.

Combining results for Cases 1 and 2 proves the claim.

5 Open questions

Theorem 1.4 gives complete information about the spectrum of r(A,B,B) for subsets A,B of
Zp of cardinality s, t, respectively, for an odd prime p.

What happens when p is not prime? For example, for p = 9 the interval [f(7, 6), g(7, 6)]
specified by (1) and (2) is [25, 30], but the actual set of attainable values of r(A,B,B) is the
larger set {24} ∪ [25, 30]. In this example, the value r(A,B,B) = 24 is achieved by A =
{0, 1, 2, 4, 5, 7, 8} and B = {0, 1, 3, 4, 6, 7}; the two-way implication of Lemma 4.2 tells us that
this value cannot be achieved by taking B to be the interval {0, 1, 2, 3, 4, 5}.

More generally, what can be said about r(A,B,B) when G is not a cyclic group?
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[10] V. Lev, T. Schoen, Cameron–Erdős modulo a prime, Finite Fields Appl. vol. 8 (2002) pp.
108–119.

9



[11] J. M. Pollard, Addition properties of residue classes, J. Lond. Math. Soc. vol. 11 (1975),
147–152.

[12] W. Samotij and B. Sudakov, The number of additive triples in subsets of Abelian groups,
Math. Proc. Camb. Phil. Soc. vol. 160 (2016), pp. 495–512.

[13] I. Schur, Uber die Kongruenz xm + ym ≡ zm (mod p), Jber. Deutch. Mat. Verein. vol. 25
(1916), pp. 114–117.
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